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OPTIMAL ADVERTISING POLICY UNDER DYNAMIC CONDI nONS 

by 

Marc Nerlove and Kenneth J. Arrow 

Stanford University 

Advertising expenditures are similar in many ways to investments in 

durable plant and equipment.  The latter affect the present and future 

character of output and, hence, the present and future net revenue of 

the investing firm.  Advertising expenditures affect the present and 

future demand for the product and, hence^ the present and future net 

revenue of the firm which advertises.  In a previous paper, Dorfman and 

Steiner [VI have given the necessary conditions for maximum net revenue 

when: (a) price and advertising expenditures are the only variables 

affecting the demand for the product; (b) current advertising expen- 

ditures do not affect the future demand for the product, and (c) the 

decision-maker is a monopolist who can determine both price and 

advertising expenditures.  They have also extended their analysis to 

cover the case in which the quality of the predict is variable. 

The research on which this paper is based was supported in part by a 

grant from the National Science Foundation to Stanford University and in 

part by Contract Nonr ■225(50) between the Office of Naval Research and 

Stanford University.  An earlier draft with the same title by Nerlove 

was supported by the Department of Agricultural Economics at the University 

of Minnesota. 

We are indebted to 0. Brownlee, I. F. Savage, R. Strotz, F. V. Waugh, 

and S. Weintraub for helpful comments on an earlier draft. 



In what follows, the Dorftaan-Steiner model is extended to cover 

the situation in which present advertising expenditures affect the 

future demand for the product.  It is shown that, under plausible 

assumptions, the necessary conditions for a maximum of the present 

value of future net revenues lead to a decision rule which is similar 

to that actually used hy many firms.  The Dorfman-Steiner model is a 

special case of the model presented here. 

1.  Formulation of the Model and the Optimal Price Policy 

The demand for the output of an individual firm or of an industry 

depends on advertising expenditures in addition to the price of the 

product, consumer incomes, and the prices of competing or complementary 

products.  Advertising expenditures may shift the demand function by 

adding new customers, those who may never have consumed the product 

before in the case of an industry, or those who have previously consumed 

the product of another firm in the case of an individual firm.  Such 

expenditures may also alter the tastes and preferences of consumers and 

thereby change the shape of the demand function as well as shift it. 

For example, "brand" advertising may make the price elasticity of demand 

for the brand advertised lower than it would otherwise be.  On the other 

hand, the attraction of new customers by means of advertising and the 

consequent broadening of the market may make demand more sensitive to 

2 
price. 

Regardless of its precise effects on the demand function, 

advertising expenditure at any one time may be expected to lose its 

effectiveness in subsequent periods.  An advertising campaign conducted 

now may bring a hundred thousand customers into the fold today, but 
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next month or next year many of these will have drifted off. Other 

firms and other industries do not stand still but also commit funds to 

advertising; these campaigns in turn draw customers to the products or 

"brands advertised and away from the product or brand initially considered. 

Furthermore, permanent changes in consumer tastes and preferences are 

difficult to effect; while a strenuous advertising campaign may induce a 

change in tastes and preferences for a time, there is a tendency for the 

preferences of consumers to return to their old pattern.  On the other 

hand, the effects of a given advertising campaign, both upon the number 

of consumers and their tastes, tend to persist for a considerable period 

following the campaign, albeit, for the reasons given, to a steadily 

dlmi ni shi ng exte nt. 

One possibility of representing the temporal differences In the 

effects of advertising on demand would be to include a number of dated, 

past advertising outlays in the demand function. However, such an 

approach is not especially useful.  A more promising analytical approach, 

and one which has considerable Intuitive appeal, Is to define a stock, 

which we shall call good will and denote by A(t)  , and which we 

suppose summarizes the effects of current and past advertising outlays 

on demand.  The price of a unit of good will, we shall suppose. Is 01, 

so that a dollar of current advertising expenditure increases good will 

k 
by a like amount.  On the other hand, a dollar spent some time ago 

should, according to our previous argument, contribute less.  One possible 

way of representing this lesser contribution Is to say that good will, 

like many other capital goods, depreciates.  If we further assume that 

current advertising expenditure cannot be negative and that depreciation 
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occurs at a constant proportional rate, 5 , we have 

(1) A + 6A=a>0, 

where a is current advertising outlay, a and A are understood to 

be functions of time, and the dot denotes differentiation with respect 

to time.  Equation (l) states that the net investment in good will is the 

difference between the gross investment (current advertising outlay) and 

the depreciation of the stock of good will. 

We are now in a position to formulate our model:  Let q.(t) be the 

rate at which purchases are made at time t  , p(t) the price charged, 

and z(t) other variables not under the control of the firm such as 

consumer incomes, population, and the prices of substitute and complemen- 

tary products.  The quantity demanded is assumed to depend on p(t) , 

A(t) , and z(t) : 

(2) q = f(p,A,z)  . 

The rate at which total production costs,  c(t)  , are incurred is 

assumed to be a function of output: 

(3) c(t) = C(q)  . 

Let r(t) be the rate at which revenue net of production costs and 

current advertising outlays accrues to the firm; then 

(^) r(t) = pf(p,A,z) - C(q) - a 

= R(p,A,z) - a  , 

where R is revenue net of production expenses only.  We assume that 

the firm attempts to maximize the present value of the stream of revenues 

net of both production expenses and advertising costs by appropriate price 

and advertising policies over time. That  is, for a given initial value 



of    A* , 

A(0) = Ao    , 

the time paths of   p    and   A    are chosen to maximize 

oo 
(5) V[P,A}   =   J      •~0kta(9#A,B) - a]dt    , 

subject to  (l), where    a   is a fixed rate of interest.    Note that    V    is 

a functional depending on the whole  time paths of    p    and    A    .     The 

optimal policies must satisfy the initial conditions    p(0) = p       and 

A(0) = A ' o 

It is  important to note  that the optimal policies need not be 

continuous  functions of time.     For example,   suppose that    A    can be chosen 

without any restriction such as (l) and that    z     is  fixed.     The initial 

stock of good will does not,   then,   constitute an effective constraint. 

Thus the optimal policies at any time will be made under the  same 

conditions and must therefore be the  same,   i.e.,   constant.     Since  the 

optimal choice of    A    may not be    A     ,  there will be a discontinuity at 

t = 0  .     The optimal policy will be to increase or decrease    A    at once 

to  its optimal level and will therefore imply an infinite instantaneous 

rate of current advertising outlays,     a(0)   .    For such paths,  the integral 

in (5) must be interpreted with some  care. 

Since  net revenue depends only on current price,   it is clear that if 

there are no restrictions on price changes,   the initial price does not 

matter.       Furthermore,   the maximum of    V    can be   found by first maximizing 

It with respect to price,  holding    A    fixed,  and then maximizing the 

result with respect to    A    by an appropriate choice of the time path of    a 

Ihus,  optimal price policy is  determined by maximizing current net revenue. 



with respect to price, i.e., by equating marginal gross revenue to 

marginal production costs at all times.: 

(6) (P- C')^^+f(p,A,Z) = 0  . 

If we let 

p of 

be the elasticity of demand with respect to price,  (6) can be written 

(6') p =   107(1 - 1)    , 

the usual price formula for a monopolist.   If we solve (6) for the optimal 

price policy p as a function of A and z  , 

p(t) = P(A,z) , 

and insert the result in (5)^ we obtain a new problem, namely, to maximize 

(7) 
-oo 1*1 -/ 

Jo 
e'^tR^z) - a]dt , 

subject to  (1) and the initial condition    A(0) = A       .     Note that (l) 

determines    a    if    A    Is given;   hence,  an optimal  solution for    A    gives 

an optimal  solution for    a 

2.     Determination of Optimal Advertising Policy 

Since    A      is fixed, maximizing the surplus 

(8) 3\A]   =V{A}   -AO    , 

subject to (l) and A(0) = A  is equivalent to the problem stated in 

the previous section.  Expanding (8) by means of (l) and (7), we have 

(9) H "/< 
oo 

-Oft e  iRCAjz) - A - 5 A]dt - A 

oo 
= I   e'^lRU.z) - 5 A]dt - [Ao + /   e"0^ A dt] 
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Integrating the second term on the right by parts, we find 

(10) Ao + f       e"0* A dt = Ao +  [e"0* A(t)J0    + a^ 

=      lim     [e-0* A(t).] + a /" 
t -» oo Jo 

.00 

e        A dt 

e        A dt 

Substituting in (9), we obtain 

(11) S 
OO 

{A}   =    / e"0*!«^,!) -   (a+5)A]dt-    lim    [e"0* A(t)] 
Jo t -» 00 

Ttie function 

(12) -^(A^)  = R(A,z) -   (a+8)A 

may be called the net "profit" function; if good will were ordinary 

capital it would represent what was left of revenue net of production 

expenses after deduction of interest and depreciation charges on 

capital. 

We make three  assumptions: 

Assumption 1;     Ttie limit        lim    [e        A(t)]    exists. 
t -» 00 

Assumption 2:  The net profit has a unique local maximum at a 

value A* . 

Assumption 3:  For sufficiently large A , the net profit function 

is decreasing. 

We first assume that z is constant, so that we are considering a 

stationary environment. 

Under Assumptions 1-3, it can be shown that any optimal policy for 

9 
constant z must be bounded;  for consider a policy, A , which is 

unbounded.  By Assumption 3, we can find another policy A which is 

-7- 



bounded and for which S | A j  has a higher value.  Let Aj. he any 

value greater than A  for which the net profit function is decreasing 

for A > Aj. -  Then the policy 

A = mln [ \,)A-\ 

is bounded, and by construction, 

(13) -TT(A,z) >  (A,z) 

for all t  .  Since A is bounded. 

(HO lim  [e-0* A(t)] = 0 < lim  [e"QftA(t)] 
t -» oo 

It follows from (13) and (l^) that 

t -» 00 

S j A}  > S{A} 

where    A    is any unbounded policy.     Thus the class of all bounded 

policies includes the optimal policy and we may restrict our considera- 

tion to bounded policies  for which       lim       [e A(t)]    vanishes. 
t -» 00 

To maximize    S \A\ ,   it is desirable  to make    TT(A,z)    as large as 

possible,   subject to the  constraints  (l) and    A(o) = A       .    Assumptions 

2  and 3 imply that     Tr(A,z)    has a unique  global maximum which is  also 

the local maximum of   TT  with respect to    A    .     This occurs at the value 

A*    which may be  determined by  solving 

(15) öjTiA^ =  öj^zi _   (a4ft) 

=   [P(A,z)  -  C'[f[P(A,z),A,z]]   ^ £l£t|l«LAllJ 

-  (a+6) 

=   0     , 

-8- 



for    A    where    P(A,z)     is  determined by solving  (6)  for  the optimal price 

/v 10 policy   p    as a function of    A    and    z 

We denote the  solution to  (15) as    A* ;   it is a  function of    z 

Since    z    is,   in general,   a function of time.     A*    has been defined as a 

function of time.     We will rei_r  to the policy 

(16) A(t)   = A*[z(t)] 

as being the instantaneously optimal policy.  This policy can be given 

a relatively simple form.  Let 

A öf 
ß = f 3Ä ' 

the elasticity of demand with respect to advertising.  If C  is 

expressed in terms of p  , from (6'), (15) can ^>e  simplified to 

(17) 
A* A 
p<1   n(a + ») 

This is a dynamic counterpart of Dorfman and Stelner's main result [h]. 

What is the relation between the policy designed to maximize net 

profits at each instant of time and the optimal policy? First consider 

the case where  z^j is constant over time so that the instantaneously 

optimal policy is a constant, A* = A*(z)  .  Clearly, the policy is 

optimal for  t > 0  _, since 

(18) 
«00 

S (A») = TT(A*.z) / 
Jo+ 

°*it _ Ilte^sJ 
a 

is as large as possible  and not affected by what happens at the   single 

point    t = 0   ,  and since,   for (17),    A* = 0    so that the  constraint (l) 

is  satisfied: 

(19) •* • 0 •»• 5 A* > 0 

■9- 



where    a*    Is the  current advertising outlay determined by    A*     ,  for 

t > 0     .     HIUS,  the key question is:     What happens at    t =  0  ?    If 

A* > A     , we either have a Jump in    A*    at    t = 0  ,  in which case 

11 A(O)    and therefore    a*(0)     are infinite,      or    A* = 0    .     In either 

case,  the constraints are satisfied.     On the other hand,  suppose that 

A* < A    ;   then    A(t)    has a  downward jump at    t = 0    and    A(0)     ,  and 

therefore    A(0)    are    -oo  ,   contradicting (l)   •    We have proved 

Theorem 1:     If    A*    is  a point at which   Tr(A,z)    reaches a maximum, 

and if    A* > A    ,   then  the optimal advertising policy for constant    z    is 

a* = 8 A* 

and 
8 A*      if    A* = A   1 

a* 
+oo if    A* > A o j 

for t > 0 

for t = 0 

A*     is determined by equations (6)  and (15). 

Although good will can have  an upward Jump at    t = 0  ,   as we have 

already observed it cannot have a downward jump in view of the constraint 

(l).     What then is   the  optimal policy if    A* < A     ?    Clearly,    TT(A,z) 

increases  as we decrease    A     as long as    A    is  greater  than    A*     ;   hence, 

the optimal policy must be to decrease    A    as  fast as possible.     The 

greatest  rate  at which this  can be   done   Is giver' by the  equality in  (l): 

(20) A + 6 A = 0 

or 

(21) A=A    e-8t 

o 

At  some time, t = t    , 

A(T)  = A*     , 

namely. . 

-10- 



v 
(22) 1 ,   o 

T = 6 log Ä? 

Bien the firm will be in the same position looking forward from T as it 

would have been had A* = A  to begin with; hence, the optimal policy- 

will be to continue with the stationary policy A(t) = A*  .  We have 

proved: 

Theorem 2:  If A* is a point at which 'TV{A,z)    reaches a maximum, 

and if A* < A , then the optimal advertising policy for constant z is 

A 
a* = 0    for 0 < t < =• log -£ 

—   — O     A* 

and 
A 

a* = 6 A* for t > - log jjg    , 

where A* is letermined by equations (6) and (15)- 

The assumption of a constant z was used in the proofs of 

Theorems 1 and 2 only to establish that A* satisfied (l) and that 

e-^ACt) 

approaches zero as t approaches infinity.  Without any change in the 

argument, we state 

Theorem 3:  Let A*(z) maximize lT(A,z) with respect to A.  If 

•at 

and 

(A)  lim e""1- A*[z(t)] = 0  , 
t -» oo 

(B)  A*[z(t)] + 8 A*[z(t)] > 0  for all  t  , 

then the optimal policy,  A(t) , may be described as follows: 

(a)  for A < A*[z(0)] , the policy consists of a Jump at 

t = 0  to A*[z(0)]; A(t) = A*[z(t)]  for  t > 0  ; 

-11- 



(b) if    A    = A*[z(0)],   then    A(t) = A*[z(t)]     for all    t > 0 ; 

(c) if    A   > A*[z(0)]  ,   then    A(t) ■ Ao e~8t    for    0 < t < T  , 

and    A(t) = A*[z(t)]     for    t > T , where    T    is a solution (if any) of the 

equation 

Ao e"Bt = A*[Z(t)]   ; 

(d) if    Ao>A*[z(0)]     and    Ao e"6t > A*[z(t)]     for all 

t > 0  ,  then    A(t) = A    e"8t     for all    t > 0     . 
=: O = 

In terms of current advertising expenditures, a*(0) = +oo in case 

(a), and a*(t) = 0 for 0 < t < T in case (c); otherwise,  a*(t) 

is given by the right-hand side of (B). 

If (B) does not hold, the optimal solution becomes complicated. 

It may become profitable to have A(t) fall below the instantaneously 

optimal level, even at times when this policy does not violate (l), 

in order to prepare for later intervals in which (l) is violated.  A 

special case of this problem, with no depreciation and a finite time 

horizon, has been studied in [2], and even in this case the algorithm 

cannot be described'simply. 

3-  Some Comparative Dynamics of the General Solution for a 

Stationary Environment 

At the level of generality of the model described in the previous 

sections, it is possible to discuss the effects of changes in the two 

parameters, a and 5, on the optimal stationary policies p  , a* 

or A* , and on T  , the time point at which these stationary policies 

are achieved, when z  is assumed constant.  To go further, it is 

necessary to specialize the model and we shall do this in the next 

section. 

-12- 



First note that a and 6 enter symmetrically into equation (15) 

which determines A* , and affect p only insofar as they affect A* . 

Hence, as far as the effects of variations in the two upon either p 

or A* are concerned, they are alike.  Since IT{A,Z)  = R(A,z) - (a + 6)A 

has a unique maximum (both global and local) with respect to A, an 

increase in either a or 8 must decrease the optimal stationary policy 

A* . Analytically, the result follows from the fact that, at A = A* , 

ö2-n-/öA2 = ö2 R/ÖA2 < 0 . 

The effect of a change in either a or 8 upon the optimal price 

policy follows directly from the fact that an increase in either is 

equivalent to a decrease in A* .  Unfortunately, the effect of a 

decrease in A* upon the optimal price depends upon its effect on the 

elasticity of demand, as is veil-known.  Hence, we cannot specify the 

result without more specific knowledge of the demand function. 

Since A  is fixed, the effect of a change in a or 8 upon  T , 

for T > 0 , may be determined by differentiating (22): 

ÖT    1 dA* (23a) 35 /A* > 0  , for T > 0 , 

ÖA* since 8 > 0 , A* > 0 , and -r^- < 0 

(23b) ^T    1 fÖA» ,._    1 
^6 = " 8 [ar /A* + ^j , for T > 0  , 

which is positive or negative, according as 

(24) If/A* t ,   for T > 0  , 

3A» 
3g- i u  .  Thus, an increase in the interest rate must always 

postpone achievement of the stationary policy A* , but an increase in 

-13- 



the depreciation rate may actually hasten it. Ttie  reason is simply that 

although an  increase in the depreciation rate will lower A* still 

further below A (assuming that it is below so that T / 0), it also 

permits a faster approach with zero current advertising expenditures. 

It may be observed that ör/öö > 0 for T sufficiently small, i.e., 

A  not too far above equilibrium, and negative in the contrary case. 

The effects of changes in a and 6 upon optimal current advertising 

expenditures in the case in which T = 0 (in other words, for the 

stationary part of the solution) may be found by differentiating (19): 

(25) 

and 

(26) 

da*    ÖA* 

da* dA* 
^-E = 8 /B 

+ A* ' for T = o > * > o 

which is positive or negative, according as 

(27) l-pysU1  ' 
that is, according as A* is inelastic or elastic with respect to 8 

Again the ambiguity in the effect of a change in 5 results from the 

fact that, although an increase in 5 reduces the optimal A* by 

increasing the opportunity cost of good will, such an increase also 

implies a higher level of current advertising expenditures to maintain 

any given level of good will. 

k.     Some Comparative Dynamics of the Solution in a Special Case 

It is plain from the preceding discussion that not much can be said 

about the comparative dynamics of the solution to the optimal advertising 

problem in the general case.  If, however, one is willing to set his 
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1 
sights lover and specify particular forms for the demand and cost functions, 

a great deal more can be deduced.  In this section it will be assumed that 

T = 0,  that the total production cost function is linear in q ,  and 

that the demand function is of a particular multiplicative form, 

(23) f(p,A,z) = f^p) f2(A) f3(z) . 

For still more definite results, we will assume that the demand function 

is linear in the logarithms, which is a special case of (28): 

(29) f(p,A,z) = kp"7" Aß z^ . 

Previously, the symbols  n and ß have been defined as the elasticities 

of demand with respect to price and good will, respectively;  ^  iö the 

elasticity of demand with respect to the variable, z, ; if z is income, 

then £  is the income elasticity of demand. 

Theorem 3 assures us that the optimal policy for all  t will coincide 

with the instantaneously optimal policy defined by (31) and (33) below, at 

least after a finite time period, provided A* neither increases nor 

decreases too rapidly over time. 

Since we are assuming that the total cost function is linear, the 

marginal cost is constant. 

(30) C = 7 , a constant. 

Under the multiplicative assumption (28), TJ  depends only on the 

variable  p  and ß on A.  Then, when (30) holds, (6') is an equation 

involving only p  (and not A or z), so that 

(31) P  =  7  TI/(T|-1)  is a constant with respect zo    A    and Z. 

Notice that (31) implies that ^  is also a constant with respect to A 

and z.  Since the optimal price is surely not negative, we must have n > 1. 

-15- 
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Under the assianptions (28) and (30), we can write, from (k), 

(32) R(P,A,Z) = (p-7) fj/p) f2(A) f3(z) 

= R^p) f2(A) f3(Z)     , 

where 

R-^P) = (P-7)  ^(p)     • 

Hie price, p  , maximized R1(p) ; let R. = RAp)  •  Ihen 

R(A,z) = IL   fo(A) f,(z) .  If we now apply (l5)> we have 

(33) f^(A») = (a+ B)/^ f3(z) , 

and the second-order condition for an optimum is that    f"(A*) < 0 

If we differentiate  (33) with respect to    a    , we have 

f|(A*) (Ö A*/da ) = 1/% f3(z) 

and therefore 

(3^) bA*/d a = ö A*/ä 6 < 0     . 

For constant     z     , we can apply (25)  to find 

(35) ä a*/d a = 8(ö A*/0 a) <  0    . 

If, on the other hand, we substitute (3^) into (26), the sign remains 

amhiguous. 

For any given p  , R-^p) is a decreasing function of 7 ; hence, 

the maximum value,  R , must also decrease as y    increases.  Then 

the right-hand side of (33) increases with 7 ; since  f" < 0 , 

(36) ö A*/d 7 < 0 

lb find the effect of    7    on the price,    p     ,  we note that the 

latter is defined by the condition. 

-16- 
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(36) ö A*/0 7 < 0 

To  find the effect of 7 on the price, p  , we note that the 

latter is defined by the condition. 
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Ö R^/Ö p =  0     , 

and that the second-order condition for a maximum is    är R^ö p    < 0 

Otoen,  as usual, we have 

Since 

(37) 

ö p2 d7 + ^3T 

Tvr7 = - fi<p) > 0 

dp/d/ > 0     . 

To sum up, it has been established that for multiplicative demand 

functions and constant marginal costs, price is constant with respect 

to income, the rate of interest or the rate of depreciation, and increases 

vith marginal cost y    ,   the stock of good vill decreases as the rate of 

interest or the rate of depreciation or the marginal cost increases, 

and current advertising outlay decreases as the rate of interest increases 

for fixed z 

We now move to the still more specific hypothesis, (29), that the 

demand function is linear in the logarithms.  The second-order conditions 

now Imply that ß < 1 .  From (l?), we now find that the optimal good 

will is a constant proportion of sales.  But note that, since  z may be 

changing over time, sales may not remain constant, in which case A* will 

also change. 

We may solve (29), (3l)> and (17) for A* as a function of z  : 

(38) A» = r * f* £"*  . iVd-ß), _iL )-V(l-ß)zt/(l-ß) 
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Bius A* is a function solely of the time path of income and of the 

parameters, a , ß , 7 , 6 , TJ , and g  . The  parameter k may be 

thought of as defining the units of z ; hence, we may set k=l without 

loss of generality. 

If z is not held constant over time, the results given hy (35) 

no longer hold because the effects of increasing income may offset the 

effects of changes in the Interest rate or depreciation rates.  Differen- 

tiating (38) with respect to time and substituting the result in (l), 

we find 

(39) a*(t) = [B + I^O(||/Z)]A* 

where A* is given by (38)-  We will suppose that Income (or whatever 

other demand shifter z  is taken to represent) is changing or expecting 

to change at a constant proportional rate, p  , so that 

{hO) dt/z = p » constant. 

Under these conditions. It may easily be verified that the 

assumptions (A) and (B) of Theorem 3 are equivalent to the conditions, 

Ul) a> Cp/0--ß) > - » , 

and these will be assumed in the following.  (if the second inequality 

is reversed, then obviously the optimal policy is never to advertise.) 

Dius, we may consider the effects of changes in seven parameters: 

a,ß,7,6,T|,p, and ^  on optimal current advertising expenditure. 

Rather than discuss all the possible effects, however, we shall limit 

ourselves to the effects of changes in the interest and depreciation 

rates, a and 6  , and leave the remaining analyses to the reader. 
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Differentiating a* vith respect to a , we find 

(fe) 
öa*   r R   6 Pi /  (-A*)        -a     . . 

so that an Increase in the interest rate always reduces optimal current 

advertising expenditure.  On the other hand, differentiating with respect 

to 8  , we find 

[(l-ß)a-&ß] - £| 

(^3) 
(a!+&)(i-ß) 

A* . 

Thus, the effect of a change in the depreciation rate upon optimal current 

advertising expenditures depends upon the relationships among all the 

parameters. 

More useful conclusions may be drawn by expressing optimal advertising 

expenditures as a ratio to sales. Let this ratio he a ; substituting 

for A* in (39),from (l?), we obtain 

(WO -^<**B> • Tl(Q:+6) XW ' l-ß> 

If the value of a computed from {kh)     is negative, then the optional 

policy is zero advertising.  Thus, assuming, as we have, that income 

(or any other demand shifter) changes at a constant proportional rate 

(which may be zero) implies that firms should try to keep a constant 

ratio of sales to advertising.  It is interesting to note that firms 

really do seem to follow this rule of thumb.  Borden [3, pp. 721-22] 

reports that in 1935 the Association of National Advertisers found that 

of 215 companies investigated, ^>k  per cent stated that their advertising 

appropriations were determined as a percentage of sales, either of the 

past year or expected in the year of the budget, and another 16 per cent 
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stated that their appropriations were guided in part hy a percentage of 

sales. While the evidence is meager, what there is does suggest that 

the model developed here is plausible. 

The parameters of the model enter into the determination of the 

optimal ratio of advertising to sales in a much simpler manner than 

they do in the determination of the absolute level of optimal current 

advertising.  It is therefore easier to discuss the effects of changes 

in these parameters on the optimal ratio.  The derivatives of the ratio 

with respect to these parameters are given in the table below. 

Table.  Effects of Changes in a, ß, 7 , 5 , T| , p , and ^ upon a . 

Parameter Derivative of    cr   with respect 
to the parameter 

Sign of the derivative of 
a 

-a < n a a + ö 

ß (i-ß)28+ trfafSUo 

T,(CH-8)(l-ß)2 
> 0 

7 0 =  0 

5 
ß       Cn:       t 0) > 0 

n 
CT 

< 0 

P /P     v  (   *-) > 0 

C ß            (    P    s 
> 0     if    p > 0 

< 0     if    p < 0 
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Note that changes in marginal cost have no effect, an increase in 

the interest rate or in the price elasticity of demand always reduces the 

ratio, and that an increase in advertising effectiveness or in the rate 

of growth of income always increases the ratio.  Hie effects of a change 

in the depreciation rate, 6 , always increases the proportion, in 

contrast to its effect on the absolute level which is ambiguous. The 

effect of a change in the income elasticity of demand depends on the 

sign of p 

5.  Summary 

In this paper we derive optimal advertising and price policies for 

bhe individual firm under conditions of imperfect competition. Our model 

is simplified in the sense that it allows jump policies, which imply an 

infinite rate of current advertising expenditure, in the initial period. 

More realistic models may be developed by setting an upper bound on the 

rate of expenditure (Arrow [1]) or by introducing a non-linear Invest- 

ment cost function (Strotz [9] and Nerlove [8]).  Our model has the 

advantage of considering contraction as well as expansion policies. 

When no factors operate to shift the demand function Independently 

of the firm's actions, we show that the optimal price and advertising 

policies are stationary after a certain point. The  concept of good 

will, a stock related to the flow of current advertising expenditures, 

is introduced.  We assume that this stock depreciates at a constant 

proportional rate, 8, and that the future is discounted at a constant 

rate of interest, a    Although we find that changes in a and 6 

affect the optimal good will in the same way, the effects upon current 

-21- 



advertising expenditures and the time at which a stationary policy 

commences are asymmetrical. 

Analysis of the special case in which demand is linear in 

logarit.ims and total cost is linear leads to more specific conclusions. 

We show that the optimal stationary solution implies a constant ratio 

of advertising to sales. Even in the non-stationary case, in which 

other factors operate to shift the demand function, the same result is 

ohtained when these factors are assumed to change at a constant 

proportional rate.  This result is supported ty some evidence on the 

actual behavior of firms. 
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Footnotes 

1. The idea that advertising is a form of investment occurs in Hoos 

[5J. 

2. See Borden [3], pp. ^33-30. 

3. Vidale and Wolfe [10] present a large amount of empirical 

evidence that the effects of advertising linger on but diminish 

as time passes. As Waugh [11] has put it,"...old advertisements 

never die — they Just fade away." Vidale and Wolfe studied a 

number of situations in which an advertising campaign was run and 

then all further advertising ceased; they were thus able to 

ascertain the extent to which the effect of the campaign diminished 

over time. 

h. The assumption that the cost of adding to good will is always one, 

no matter at what level current advertising expenditures are 

carried on, is actually very unrealistic.  At very high levels of 

current advertising expenditure resort must be had to inferior media 

so that the costs of adding a dollar's worth to good will must surely 

rise with the level of expenditure.  One possible way of dealing 

with this problem is to set a finite upper bound to current 
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8. 

advertising expenditure, below which we assume a proportional cost 

of adding to good will.  !Bais alternative has been discussed by- 

Arrow [1].  Alternatively and more generally, one might introduce 

a non-linear cost function for additions to good will.  Ulis 

procedure has been used in Strotz [9] and Nerlove [8] in connec- 

tion with optimal investment policies.  Lack of one or the other 

of these assumptions leads to policies which may have a Jump at 

t = 0 .  Since we are primarily interested in the characteristics 

of the optimal policy after t = 0 , however, we shall restrict 

ourselves to the simpler, but more unrealistic case. 

One can conceive of a situation in which the effects of negative 

advertising expenditure on demand could be achieved, namely, let 

a firm advertise the product of a competitor.  Unfortunately, to 

achieve the same effect on net revenue as negative advertising, 

one's competitor would have to pay double the amount of the 

expenditure to the firm in question.  This is hardly plausible. 

For this reason, and since good will cannot be sold in any other 

way without selling the entire firm, we rule out negative current 

advertising expenditures altogether. 

The concept of exponentially depreciating good will was essentially 

introduced by Waugh [11].  It leads in the discrete case to a 

distributed lag model similar to the one employed by Jastram [6] 

which in turn was based on the work of Koyck [7]. 

This section is largely based on the material given in [1]. 

Arrow [1] deals with the more general situation in which the net 

profit function may have a finite number of distinct local maxima. 
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10. 

11. 

Note, however, that the magnitude which is bounded is good will, 

not current advertising expend!ture. It is perfectly possible for 

the latter to be unbounded even if the former is bounded. 

Equation (15) is a generalization of the result obtained by 

Dorfman and Steiner [k].    It states that at the optimal price 

(price equal marginal production costs), the marginal revenue 

from increased good will net of the marginal costs of producing 

the increased output should be equal to the marginal opportunity 

cost of investment In good will.  To see this, note that the 

instantaneous rate of return on investment is a ; the instantaneous 

decay is 6 ;  therefore, if the firm invests a dollar now and spends 

it on advertising later, it makes a and saves 8 

matter another way, a dollar invested in a bond will yield e^ 

To put the 

at 

in t periods, whereas a dollar invested in advertising will 

require e 
-8t 

further investment over the t periods to offset 

decay, the opportunity cost is e  - e   , so that the marginal 

opportunity cost at t = 0 is a+8. 

This is the difficulty referred to in footnote k.     Modifying the 

model in either of the two ways suggested there would lead to a 

policy without a Jump. 
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